Adapt to binder

colab
imperator 1 year ago
parent 73a79a1627
commit 0f2a06a74b

@ -1,21 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "wd9no3mxCn7b",
"metadata": {
"id": "wd9no3mxCn7b"
},
"outputs": [],
"source": [
"!wget https://github.com/ManteLab/Iton_notebooks_public/raw/refs/heads/main/utils_ex6/utils.py -O utils.py\n",
"!wget https://raw.githubusercontent.com/ManteLab/Iton_notebooks_public/refs/heads/main/data_ex6/neural_data.mat -O neural_data.mat\n",
"!wget https://raw.githubusercontent.com/ManteLab/Iton_notebooks_public/refs/heads/main/data_ex6/dataset1.mat -O dataset1.mat\n",
"!wget https://raw.githubusercontent.com/ManteLab/Iton_notebooks_public/refs/heads/main/data_ex6/dataset3.mat -O dataset3.mat\n",
"!pip3 install --quiet hdf5storage ipympl"
]
},
{
"cell_type": "markdown",
"id": "ec7211ca-a104-4c3d-b528-102841bfd937",
@ -166,10 +150,9 @@
},
"outputs": [],
"source": [
"import hdf5storage\n",
"from utils import plot_model_free_analysis_conditions_vs_baseline\n",
"from utils import plot_model_free_analysis_conditions_vs_baseline, loadmat\n",
"\n",
"dataset_1 = hdf5storage.loadmat('dataset1.mat')\n",
"dataset_1 = loadmat('dataset1.mat')\n",
"\n",
"plot_model_free_analysis_conditions_vs_baseline(\n",
" baseline_data=dataset_1\n",
@ -185,10 +168,9 @@
},
"outputs": [],
"source": [
"import hdf5storage\n",
"from utils import plot_model_free_analysis_conditions_vs_baseline\n",
"from utils import plot_model_free_analysis_conditions_vs_baseline, loadmat\n",
"\n",
"dataset_3 = hdf5storage.loadmat('dataset3.mat')\n",
"dataset_3 = loadmat('dataset3.mat')\n",
"\n",
"plot_model_free_analysis_conditions_vs_baseline(\n",
" baseline_data=dataset_3\n",
@ -232,9 +214,9 @@
},
"outputs": [],
"source": [
"import hdf5storage\n",
"from utils import loadmat\n",
"\n",
"neural_data = hdf5storage.loadmat('neural_data.mat')"
"neural_data = loadmat('neural_data.mat')"
]
},
{

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -1,5 +1,5 @@
scipy
numpy
matplotlib
hdf5storage
ipympl
mat73

@ -0,0 +1,780 @@
from itertools import product
import numpy as np
from scipy.integrate import trapezoid
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from IPython.display import display
from ipywidgets import interact, interact_manual, IntSlider, FloatSlider, IntRangeSlider, ToggleButton, ToggleButtons, Layout
from scipy.io import loadmat as sp_loadmat
from mat73 import loadmat as mat73_loadmat
def in_colab():
"""Check if the code is running in Google Colab."""
try:
import google.colab
return True
except ImportError:
return False
is_colab = in_colab()
continuous_update = not is_colab
if is_colab:
from google.colab import output
output.enable_custom_widget_manager()
def setup_matplotlib_magic():
get_ipython().run_line_magic('matplotlib', 'inline' if is_colab else 'widget')
def draw_figure(fig):
if not is_colab:
fig.canvas.draw_idle()
else:
plt.show()
def maybe_setup(setup_fun, state):
if not is_colab:
return
elif 'needs_setup' not in state:
state['needs_setup'] = True
else:
state.update(setup_fun())
def loadmat(mat_file):
try:
return sp_loadmat(mat_file)
except Exception:
return mat73_loadmat(mat_file)
def generate_sims(C, k, alpha, sigma_a, sigma_s, lambda_, n_sim=100, tau=100, dt_total=11 / 85):
dt = dt_total / tau
# discretize C
if isinstance(k, np.ndarray):
C_scaled = np.repeat(C * k[:, np.newaxis], tau, axis=1)
n_sim = len(k)
else:
C_scaled = np.repeat(C * k, tau)[np.newaxis, :]
T = C_scaled.shape[-1]
# noise terms
xiR = np.random.randn(n_sim) * alpha / k
xiL = np.random.randn(n_sim) * alpha / k
directional_noise = (
xiR[:, np.newaxis] * (C_scaled > 0) +
xiL[:, np.newaxis] * (C_scaled < 0)
)
dW = np.sqrt(dt) * np.random.randn(n_sim, T)
eta = 1 + np.random.randn(n_sim, T) * (sigma_s * np.sqrt(tau))
# accumulated evidence
a = np.zeros((n_sim, T + 1))
mE = np.zeros((n_sim, T + 1))
for t in range(T):
a[:, t + 1] = a[:, t] + (
directional_noise[:, t] * C_scaled[:, t] * (dt_total / tau) +
lambda_ * a[:, t] * (dt_total / tau) +
sigma_a * dW[:, t] +
eta[:, t] * C_scaled[:, t] * (dt_total / tau)
)
# momentary evidence
mE[:, t+1] = eta[:, t] * C_scaled[:, t] * (dt_total / tau) + lambda_ * a[:, t] * (dt_total / tau)
return a[:, 1:], mE, tau, dt
def generate_sims_conditions(ks, directions, sim_parameters, num_sims_per_condition):
simulation_combinations = list(product(ks, directions))
a_all = []
mE_all = []
k_idx_all = []
direction_all = []
for idx, (k, direction) in enumerate(simulation_combinations):
C = sim_parameters['C'] * direction
dir_label = 1 if direction == 1 else 0
a_temp, mE_temp, tau, dt = generate_sims(**{
**sim_parameters,
'C': C,
'k': k,
'n_sim': num_sims_per_condition
})
# subsample at every tau steps
a_sampled = a_temp[:, tau-1::tau]
mE_sampled = mE_temp[:, tau-1::tau] / dt
a_all.append(a_sampled)
mE_all.append(mE_sampled)
k_idx_all.extend([k] * num_sims_per_condition)
direction_all.extend([dir_label] * num_sims_per_condition)
a_all = np.vstack(a_all)
mE_all = np.vstack(mE_all)
k_idx_all = np.array(k_idx_all)
direction_all = np.array(direction_all)
choices = (a_all > 0).astype(int) # 1 is right, 0 is left
is_correct = (choices == direction_all[:, np.newaxis]).astype(int)
time = np.arange(len(C))
return time, a_all, mE_all, k_idx_all, choices, is_correct
def plot_sims(C_size=11, num_sims=30 if not is_colab else 5):
setup_matplotlib_magic()
def setup():
fig, axes = plt.subplots(figsize=(6.5, 5))
evidence_line = axes.plot([], [], color='C2', alpha=1)[0]
sim_lines = []
for i in range(num_sims):
sim_line = axes.plot([], [], color='C0', alpha=0.3)[0]
sim_lines += [sim_line]
axes.set(
title=f"{num_sims} Simulations",
ylabel="value",
xlabel="time $t$",
xlim=(0, 11),
ylim=(-1.5, 1.5)
)
plt.axhline(0., color='black', alpha=0.3)
plt.tight_layout()
legend_elements = [
Line2D([], [], color='C2', label='evidence pulse'),
Line2D([], [], color='C0', label='accumulator $a$ (decision: right)'),
Line2D([], [], color='C1', label='accumulator $a$ (decision: left)')
]
axes.legend(handles=legend_elements, loc='upper right')
return {'fig': fig, 'axes': axes, 'evidence_line': evidence_line, 'sim_lines': sim_lines}
state = setup()
state['random_seed'] = 42
def update_plot(C_dir, C, k, alpha, sigma_a, sigma_s, lambda_, fixed_noise):
maybe_setup(setup, state)
if fixed_noise == 'redraw noise':
state['random_seed'] = np.random.randint(0, 2**32)
np.random.seed(state['random_seed'])
C = np.concatenate([np.zeros(C[0]), np.ones(C[1] - C[0]), np.zeros(C_size - C[1])])
C *= 1 if C_dir == 'pulse right' else -1
sims, *_ = generate_sims(C, k, alpha, sigma_a, sigma_s, lambda_, n_sim=num_sims)
for sim, sim_line in zip(sims, state['sim_lines']):
sim_line.set_data(np.linspace(0, len(C), len(sim)), sim)
sim_line.set_color('C0' if sim[-1] > 0 else 'C1')
state['evidence_line'].set_data(np.linspace(0., len(C), len(C) * 1_000), np.repeat(C, 1_000) * k)
draw_figure(state['fig'])
style = {'description_width': '150px'}
layout = Layout(width='600px')
sliders = {
'C_dir': ToggleButtons(options=['pulse left', 'pulse right'], value='pulse right', description=' '),
'C': IntRangeSlider(min=0, max=C_size, value=[3, 7], description='evidence pulse timing', style=style, layout=layout, continuous_update=continuous_update),
'k': FloatSlider(min=1e-6, max=1., step=0.01, value=0.5, description='coherence', style=style, layout=layout, continuous_update=continuous_update),
'sigma_s': FloatSlider(min=0, max=3, step=0.01, value=0., description='fast noise (input)', style=style, layout=layout, continuous_update=continuous_update),
'alpha': FloatSlider(min=0, max=1, step=0.01, value=0., description='slow noise (brain)', style=style, layout=layout, continuous_update=continuous_update),
'sigma_a': FloatSlider(min=0, max=1, step=0.01, value=0., description='fast inner noise (brain)', style=style, layout=layout, continuous_update=continuous_update),
'lambda_': FloatSlider(min=-5, max=5, step=0.01, value=0., description='leakiness', style=style, layout=layout, continuous_update=continuous_update),
'fixed_noise': ToggleButtons(options=['fix noise', 'redraw noise'], value='fix noise', description=' '),
}
interact(update_plot, **sliders)
def update_errorbar(err_container, x, y, yerr):
err_container.lines[0].set_data(x, y)
linecol = err_container.lines[2][0]
segments = []
for xi, yi, yerri in zip(x, y, yerr):
segments.append([[xi, yi - yerri], [xi, yi + yerri]])
linecol.set_segments(segments)
def plot_model_free_analysis_conditions(C, ks, num_sims_per_condition=2_000):
setup_matplotlib_magic()
def setup():
fig, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=True)
accuracy_lines = [axes[0].errorbar([], [], yerr=[], label=f'$k = {k}$') for k in ks]
kernel_lines = [axes[1].plot([], [], label=f'$k = {k}$')[0] for k in ks]
axes[0].set(
title="accuracy",
xlabel="$t$",
xlim=(0, len(C) - 1),
ylim=(0, 1)
)
axes[0].legend(loc='lower right', fontsize='small')
axes[1].set(
title="psychophysical kernel",
xlabel="$t$",
ylim=(-3, 3)
)
axes[1].legend(loc='lower left', fontsize='small')
fig.tight_layout()
return {'fig': fig, 'axes': axes, 'accuracy_lines': accuracy_lines, 'kernel_lines': kernel_lines}
state = setup() if not is_colab else {'needs_setup': True}
def update_plot(sigma_s, alpha, sigma_a, lambda_):
maybe_setup(setup, state)
sim_parameters = {
'C': C,
'sigma_s': sigma_s,
'alpha': alpha,
'sigma_a': sigma_a,
'lambda_': lambda_
}
directions = [1, -1]
time, a_all, mE_all, k_idx_all, choices, is_correct = generate_sims_conditions(
ks, directions, sim_parameters, num_sims_per_condition
)
for i, k in enumerate(ks):
mask = (k_idx_all == k)
is_corr_k = is_correct[mask, :]
perf = is_corr_k.mean(axis=0)
ci95 = 1.96 * is_corr_k.std(axis=0) / np.sqrt(mask.sum())
update_errorbar(state['accuracy_lines'][i], time, perf, yerr=ci95)
psy_kernel = (
mE_all[ (choices[:, -1] == 1) & mask ].mean(axis=0) -
mE_all[ (choices[:, -1] != 1) & mask ].mean(axis=0)
)
state['kernel_lines'][i].set_data(time, psy_kernel)
state['fig'].tight_layout()
draw_figure(state['fig'])
style = {'description_width': '150px'}
layout = Layout(width='600px')
sliders = {
'sigma_s': FloatSlider(min=0, max=5, step=0.01, value=0., description='fast noise (input)', style=style, layout=layout),
'alpha': FloatSlider(min=0, max=1, step=0.01, value=0., description='slow noise (brain)', style=style, layout=layout),
'sigma_a': FloatSlider(min=0, max=2, step=0.01, value=0., description='fast inner noise (brain)', style=style, layout=layout),
'lambda_': FloatSlider(min=-5, max=5, step=0.01, value=0., description='leakiness', style=style, layout=layout)
}
interact_manual.options(manual_name='run simulations')(
update_plot,
**sliders
)
def model_free_analysis(dataset):
is_correct = dataset['choices'] == dataset['direction'].flatten()
time = np.arange(dataset['a'].shape[1])
perfs = []
ci95s = []
psy_kernels = []
for k_idx in [1, 2, 3]:
mask = (dataset['kIdx'].flatten() == k_idx)
is_corr_k = is_correct[:, mask]
perf = is_corr_k.mean(axis=1)
ci95 = 1.96 * is_corr_k.std(axis=1) / np.sqrt(mask.sum())
psy_kernel = (
dataset['mE'][ (dataset['choices'][-1, :] == 1) & mask ].mean(axis=0) -
dataset['mE'][ (dataset['choices'][-1, :] != 1) & mask ].mean(axis=0)
)
perfs += [perf]
ci95s += [ci95]
psy_kernels += [psy_kernel]
return time, perfs, ci95s, psy_kernels
def plot_model_free_analysis_conditions_vs_baseline(baseline_data, num_sims_per_condition=2_000):
setup_matplotlib_magic()
C = np.concatenate(([0], np.ones(10)))
ks = [0.2, 0.4, 0.8]
def setup():
fig, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=True)
accuracy_lines = [axes[0].errorbar([], [], yerr=[], label=f'$k = {k}$') for k in ks]
kernel_lines = [axes[1].plot([], [], label=f'$k = {k}$')[0] for k in ks]
axes[0].set(
title="accuracy",
xlabel="$t$",
xlim=(0, len(C) - 1),
ylim=(0, 1)
)
axes[1].set(
title="psychophysical kernel",
xlabel="$t$",
ylim=(-3, 3)
)
time, perfs, ci95s, psy_kernels = model_free_analysis(baseline_data)
for i, (perf, ci95, psy_kernel) in enumerate(zip(perfs, ci95s, psy_kernels, strict=True)):
axes[0].errorbar(time, perf, yerr=ci95, color=f'C{i}', label=f'$k = {ks[i]}$ (baseline)', linestyle='--', alpha=0.3)
axes[1].plot(time, psy_kernel, color=f'C{i}', label=f'$k = {ks[i]}$ (baseline)', linestyle='--', alpha=0.3)
axes[0].legend(loc='lower right', fontsize='small')
axes[1].legend(loc='lower left', fontsize='small')
fig.tight_layout()
return {'fig': fig, 'axes': axes, 'accuracy_lines': accuracy_lines, 'kernel_lines': kernel_lines}
state = setup() if not is_colab else {'needs_setup': True}
def update_plot(sigma_s, alpha, sigma_a, lambda_):
maybe_setup(setup, state)
sim_parameters = {
'C': C,
'sigma_s': sigma_s,
'alpha': alpha,
'sigma_a': sigma_a,
'lambda_': lambda_
}
directions = [1, -1]
time, a_all, mE_all, k_idx_all, choices, is_correct = generate_sims_conditions(
ks, directions, sim_parameters, num_sims_per_condition
)
for i, k in enumerate(ks):
mask = (k_idx_all == k)
is_corr_k = is_correct[mask, :]
perf = is_corr_k.mean(axis=0)
ci95 = 1.96 * is_corr_k.std(axis=0) / np.sqrt(mask.sum())
update_errorbar(state['accuracy_lines'][i], time, perf, yerr=ci95)
psy_kernel = (
mE_all[ (choices[:, -1] == 1) & mask ].mean(axis=0) -
mE_all[ (choices[:, -1] != 1) & mask ].mean(axis=0)
)
state['kernel_lines'][i].set_data(time, psy_kernel)
state['fig'].tight_layout()
draw_figure(state['fig'])
style = {'description_width': '150px'}
layout = Layout(width='600px')
sliders = {
'sigma_s': FloatSlider(min=0, max=5, step=0.01, value=0., description='fast noise (input)', style=style, layout=layout),
'alpha': FloatSlider(min=0, max=1, step=0.01, value=0., description='slow noise (brain)', style=style, layout=layout),
'sigma_a': FloatSlider(min=0, max=2, step=0.01, value=0., description='fast inner noise (brain)', style=style, layout=layout),
'lambda_': FloatSlider(min=-5, max=5, step=0.01, value=0., description='leakiness', style=style, layout=layout)
}
interact_manual.options(manual_name='run simulations')(
update_plot,
**sliders
)
def bin_spikes(raw_spike_matrix, bin_size=50):
num_bins = raw_spike_matrix.shape[1] // bin_size
truncated_raw_spike_matrix = raw_spike_matrix[:, :num_bins * bin_size, :]
binned_spike_matrix = truncated_raw_spike_matrix.reshape([
truncated_raw_spike_matrix.shape[0],
num_bins,
-1,
truncated_raw_spike_matrix.shape[2]
]).sum(axis=2)
return binned_spike_matrix
def get_binned_spike_matrix(mat_data):
raw_spike_matrix = mat_data['RawSpikeMatrix1'][:, 149:1000, :]
binned_spike_matrix = bin_spikes(raw_spike_matrix)
binned_spike_matrix = np.sqrt(binned_spike_matrix)
time = np.arange(binned_spike_matrix.shape[1]) * 50
return time, binned_spike_matrix
def plot_single_neuron(mat_data):
setup_matplotlib_magic()
time, binned_spike_matrix = get_binned_spike_matrix(mat_data)
def setup():
fig, axes = plt.subplots(figsize=(6.5, 4.5))
neuron_line = axes.plot([], [])[0]
axes.set(
ylabel=r'$\sqrt{N_\mathrm{spikes}}$',
xlabel='time [ms]',
xlim=(0, 800)
)
return {'fig': fig, 'axes': axes, 'neuron_line': neuron_line}
state = setup()
def update_plot(neuron_idx):
maybe_setup(setup, state)
state['neuron_line'].set_data(time, binned_spike_matrix.mean(axis=0)[:, neuron_idx])
state['axes'].relim()
state['axes'].autoscale(axis='y')
state['axes'].set_title(f'Neuron #{neuron_idx}', fontsize='small')
state['fig'].tight_layout()
draw_figure(state['fig'])
sliders = {
'neuron_idx': IntSlider(min=0, max=binned_spike_matrix.shape[2] - 1, description='neuron #', layout=Layout(width='800px'), continuous_update=continuous_update)
}
interact(update_plot, **sliders)
def plot_neuron_by_choice(mat_data):
setup_matplotlib_magic()
time, binned_spike_matrix = get_binned_spike_matrix(mat_data)
correct_trials_mask = (mat_data['targ_cho'].flatten() == mat_data['targ_cor'].flatten())
right_choice = (mat_data['targ_cho'].flatten() == 1)
def setup():
fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharex=True)
choices = ['right choice', 'left choice']
correct_lines = []
for choice in choices:
correct_line = axes[0].plot([], [], label=choice)[0]
correct_lines += [correct_line]
incorrect_lines = []
for choice in choices:
incorrect_line = axes[1].plot([], [], label=choice)[0]
incorrect_lines += [incorrect_line]
axes[0].set(
title='correct trials',
ylabel=r'$\sqrt{N_\mathrm{spikes}}$',
xlabel='time [ms]',
xlim=(0, 800)
)
axes[1].set(
title='incorrect trials',
xlabel='time [ms]'
)
axes[0].legend(loc='upper right')
axes[1].legend(loc='upper right')
return {'fig': fig, 'axes': axes, 'correct_lines': correct_lines, 'incorrect_lines': incorrect_lines}
state = setup()
def update_plot(neuron_idx):
maybe_setup(setup, state)
state['correct_lines'][0].set_data(time, binned_spike_matrix[correct_trials_mask & right_choice].mean(axis=0)[:, neuron_idx])
state['correct_lines'][1].set_data(time, binned_spike_matrix[correct_trials_mask & ~right_choice].mean(axis=0)[:, neuron_idx])
state['incorrect_lines'][0].set_data(time, binned_spike_matrix[~correct_trials_mask & right_choice].mean(axis=0)[:, neuron_idx])
state['incorrect_lines'][1].set_data(time, binned_spike_matrix[~correct_trials_mask & ~right_choice].mean(axis=0)[:, neuron_idx])
state['axes'][0].relim()
state['axes'][1].relim()
state['axes'][0].autoscale(axis='y')
state['axes'][1].autoscale(axis='y')
state['fig'].suptitle(f'Neuron #{neuron_idx}', fontsize='small')
state['fig'].tight_layout()
draw_figure(state['fig'])
sliders = {
'neuron_idx': IntSlider(min=0, max=binned_spike_matrix.shape[2] - 1, description='neuron #', layout=Layout(width='800px'), continuous_update=continuous_update)
}
interact(update_plot, **sliders)
def plot_neuron_by_coherence(mat_data):
setup_matplotlib_magic()
time, binned_spike_matrix = get_binned_spike_matrix(mat_data)
correct_trials_mask = (mat_data['targ_cho'].flatten() == mat_data['targ_cor'].flatten())
coherences = np.sort(
np.unique(mat_data['dot_coh'])
)
coherences = coherences[[0, 3, 5]]
def setup():
fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharex=True)
choices = ['right choice', 'left choice']
correct_lines = []
for coherence in coherences:
correct_line = axes[0].plot([], [], label=f'{coherence = :.1%}')[0]
correct_lines += [correct_line]
incorrect_lines = []
for coherence in coherences:
incorrect_line = axes[1].plot([], [], label=f'{coherence = :.1%}')[0]
incorrect_lines += [incorrect_line]
axes[0].set(
title='correct trials',
ylabel=r'$\sqrt{N_\mathrm{spikes}}$',
xlabel='time [ms]',
xlim=(0, 800)
)
axes[1].set(
title='incorrect trials',
xlabel='time [ms]'
)
axes[0].legend(loc='upper right')
axes[1].legend(loc='upper right')
return {'fig': fig, 'axes': axes, 'correct_lines': correct_lines, 'incorrect_lines': incorrect_lines}
state = setup()
def update_plot(neuron_idx):
maybe_setup(setup, state)
for i, coherence in enumerate(coherences):
coherence_mask = (mat_data['dot_coh'].flatten() == coherence)
state['correct_lines'][i].set_data(time, binned_spike_matrix[correct_trials_mask & coherence_mask].mean(axis=0)[:, neuron_idx])
state['incorrect_lines'][i].set_data(time, binned_spike_matrix[~correct_trials_mask & coherence_mask].mean(axis=0)[:, neuron_idx])
state['axes'][0].relim()
state['axes'][1].relim()
state['axes'][0].autoscale(axis='y')
state['axes'][1].autoscale(axis='y')
state['fig'].suptitle(f'Neuron #{neuron_idx}', fontsize='small')
state['fig'].tight_layout()
draw_figure(state['fig'])
sliders = {
'neuron_idx': IntSlider(min=0, max=binned_spike_matrix.shape[2] - 1, description='neuron #', layout=Layout(width='800px'), continuous_update=continuous_update)
}
interact(update_plot, **sliders)
def calculate_deltas(mat_data):
time, binned_spike_matrix = get_binned_spike_matrix(mat_data)
right_choice = (mat_data['targ_cho'].flatten() == 1)
mean_spikes_right = binned_spike_matrix[right_choice].mean(axis=0)
mean_spikes_left = binned_spike_matrix[~right_choice].mean(axis=0)
deltas = (
trapezoid(mean_spikes_right, axis=0) -
trapezoid(mean_spikes_left, axis=0)
)
return deltas
def plot_deltas(deltas):
setup_matplotlib_magic()
fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharey=True)
axes[0].hist(deltas, bins=16, range=(-4, 4))
axes[1].hist(np.abs(deltas), bins=15, range=(0, 4.2))
axes[0].set(
ylabel='counts',
xlabel=r'$\Delta$'
)
axes[1].set(
xlabel=r'|$\Delta$|'
)
plt.tight_layout()
def plot_aggregated_neurons(mat_data):
setup_matplotlib_magic()
time, binned_spike_matrix = get_binned_spike_matrix(mat_data)
right_choice = (mat_data['targ_cho'].flatten() == 1)
mean_spikes_right = binned_spike_matrix[right_choice].mean(axis=0)
mean_spikes_left = binned_spike_matrix[~right_choice].mean(axis=0)
deltas = calculate_deltas(mat_data)
def setup():
fig, axes = plt.subplots()
lines = [
axes.plot([], [], label='right choice')[0],
axes.plot([], [], label='left choice')[0]
]
axes.set(
ylabel=r'$\sqrt{N_\mathrm{spikes}}$',
xlabel='time [ms]',
xlim=(0, 800)
)
axes.legend(loc='upper right')
return {'fig': fig, 'axes': axes, 'lines': lines}
state = setup()
def update_plot(delta_threshold):
maybe_setup(setup, state)
state['lines'][0].set_data(time, (mean_spikes_right * np.sign(deltas))[:, np.abs(deltas) > delta_threshold].mean(axis=1))
state['lines'][1].set_data(time, (mean_spikes_left * np.sign(deltas))[:, np.abs(deltas) > delta_threshold].mean(axis=1))
state['axes'].relim()
state['axes'].autoscale(axis='y')
state['axes'].set(
title=f'|Δ| > {delta_threshold:.2f}'
)
state['fig'].tight_layout()
draw_figure(state['fig'])
sliders = {
'delta_threshold': FloatSlider(min=0, max=np.abs(deltas).max() - 1e-3, description='threshold |Δ|', layout=Layout(width='800px'), continuous_update=continuous_update)
}
interact(update_plot, **sliders)
def simulate_conditions(mat_data, alpha, sigma_a, sigma_s, lambda_):
dot_coh = mat_data['dot_coh'].flatten()
dot_dir = mat_data['dot_dir'].flatten()
targ_cor = mat_data['targ_cor'].flatten()
C = np.array([0] + [1]*16)
dot_coh[dot_coh == 0] = 1e-12
k = np.unique(dot_coh)
# map directions: 0 -> 1 (right), 180 -> -1 (left)
d = np.copy(dot_dir)
d[dot_dir == 0] = 1
d[dot_dir == 180] = -1
a, _, tau, dt = generate_sims(np.outer(d, C), dot_coh, alpha, sigma_a, sigma_s, lambda_)
a = a[:, tau-1::tau]
# determine choices and correctness
cho = (a[:, -1] > 0).astype(int)
cho[cho == 0] = 2 # 2 is left, 1 is right
isCorr = cho == targ_cor
# separate correct and incorrect trials
a_Cor = a[isCorr, :]
d_Cor = d[isCorr]
cho_Cor = cho[isCorr]
coh_Cor = dot_coh[isCorr]
a_Inc = a[~isCorr, :]
d_Inc = d[~isCorr]
cho_Inc = cho[~isCorr]
coh_Inc = dot_coh[~isCorr]
# plot average accumulation for correct trials by direction
unq_dir = np.unique(d)
means_a = []
for dir_ in unq_dir:
mean_a = np.mean(a_Cor[d_Cor == dir_, :], axis=0)
means_a += [mean_a]
return means_a
def plot_sims_conditions(mat_data):
setup_matplotlib_magic()
def setup():
fig, axes = plt.subplots(figsize=(6.5, 5))
evidence_line = axes.plot([], [], color='C2', alpha=1)[0]
sim_lines = []
for choice in ['right choice', 'left choice']:
sim_line = axes.plot([], [], label=choice)[0]
sim_lines += [sim_line]
axes.set(
ylabel="mean $a$",
xlabel="time $t$",
xlim=(0, 800),
ylim=(-0.5, .5)
)
axes.legend(loc='upper right')
plt.tight_layout()
return {'fig': fig, 'axes': axes, 'sim_lines': sim_lines}
state = setup()
state['random_seed'] = 42
def update_plot(alpha, sigma_a, sigma_s, lambda_, fixed_noise):
maybe_setup(setup, state)
if fixed_noise == 'redraw noise':
state['random_seed'] = np.random.randint(0, 2**32)
np.random.seed(state['random_seed'])
means_a = simulate_conditions(mat_data, alpha, sigma_a, sigma_s, lambda_)
for mean_a, line in zip(means_a[::-1], state['sim_lines'], strict=True):
line.set_data(np.arange(len(mean_a)) * 50, mean_a)
state['axes'].relim()
state['axes'].autoscale(axis='y')
state['fig'].tight_layout()
draw_figure(state['fig'])
style = {'description_width': '150px'}
layout = Layout(width='600px')
sliders = {
'sigma_s': FloatSlider(min=0, max=3, step=0.01, value=0., description='fast noise (input)', style=style, layout=layout, continuous_update=continuous_update),
'alpha': FloatSlider(min=0, max=1, step=0.01, value=0., description='slow noise (brain)', style=style, layout=layout, continuous_update=continuous_update),
'sigma_a': FloatSlider(min=0, max=1, step=0.01, value=0., description='fast inner noise (brain)', style=style, layout=layout, continuous_update=continuous_update),
'lambda_': FloatSlider(min=-5, max=5, step=0.01, value=0., description='leakiness', style=style, layout=layout, continuous_update=continuous_update),
'fixed_noise': ToggleButtons(options=['fix noise', 'redraw noise'], value='fix noise', description=' '),
}
interact(update_plot, **sliders)
Loading…
Cancel
Save